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Abstract

The aim of this work is to introduce a two-dimensional macroscopic traffic model for multiple
populations of vehicles. Starting from the paper [12], where a two-dimensional model for a single
class of vehicles is proposed, we extend the dynamics to a multi-class model leading to a coupled
system of conservation laws in two space dimensions. Besides the study of the Riemann problems
we also present a Lax-Friedrichs type discretization scheme recovering the theoretical results by
means of numerical tests. We calibrate the multi-class model with real data and compare the
fitted model to the real trajectories. Finally, we test the ability of the model to simulate the
overtaking of vehicles.

Keywords. Macroscopic traffic flow, two-dimensional model, multi-class model, Riemann problems,
data-fitting.
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1 Introduction

In this paper, we are concerned with the study of a two-dimensional multi-class traffic model. This
work is placed in the constantly evolving framework of mathematical models for traffic flow. The
goal of traffic models is to provide tools capable of helping traffic management, in order to optimize
transport and obtain economic and environmental benefits, such as the reduction of vehicles queues
and pollution.

Traffic models are divided into three main categories, which depend on the scale of observation:
microscopic, macroscopic and kinetic models. Microscopic models follow the dynamics of each vehicle
and are described by ordinary differential equations (ODEs), see e. g. [11, 24, 25, 28]. Macroscopic
models, based on fluid dynamics, consider aggregated quantities such as the density of vehicles and are
governed by partial differential equations (PDEs), see e. g. [2, 23, 31, 36]. Kinetic models [16, 24, 29, 30]
are between the previous two classes since they can be derived by microscopic models while macroscopic
models can be derived by kinetic descriptions. We refer to [1, 10] and references therein for a more
complete review on traffic models.

In recent years, the ever-increasing amount of real data, due to new technologies, has widely
influenced the research on mathematical models for traffic flow. The common goal of researchers is
to exploit the available real data to build ad hoc traffic models, capable of simulating increasingly
realistic scenarios. We refer to [5, 8, 27] for some inspiring examples of data-fitted traffic models. The
common feature of these models is the application of vehicles trajectory data collected in datasets
such as [17, 34]. Datasets of this type generally contain data on multi-lane highways and are able to
distinguish the type of vehicle.
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The focus in this work is on macroscopic traffic models. In particular, we propose a multi-class gen-
eralization in two space dimensions of the well-known first order Lighthill-Whitham-Richards (LWR)
model [23, 31]. First order models such as the LWR are described by a single conservation law
ρt + f(ρ)x = 0, where ρ is the density of vehicles and f(ρ) is the flux function. The shortcomings of
first order models are well-known in literature, for instance the infeasible solutions with unbounded ac-
celeration [21] or the inability to reproduce complex traffic phenomena like stop-and-go waves [20, 33].
However, the extension of first order models to multi-class [13, 35], multi-lane [15] or multi-dimensional
[12] models has proven to be suitable to improve the deficiencies of the LWR model and to be able to
describe also complex traffic phenomena.

As we have already mentioned, traffic datasets contain information related to multi-lane highways
with different types of vehicles. Most traffic models refer to dynamics of single-lane traffic and therefore
do not consider the movements related to lane changes. Our aim is to exploit now all the available
data, including the line-changing behavior and the different vehicles classes. To this end, we propose an
extension of the work by Herty, Fazekas and Visconti for a single-class traffic model [12] to a multi-class
traffic model in two space dimensions. The most common approaches which include lane-changing are
the two-dimensional models and the multi-lane models. The first approach is an emerging topic, and
we refer to [4, 12, 14] for some examples. The second approach has been used for instance in [18, 19],
where the authors propose a microscopic, a kinetic and a fluid dynamic model with lane changing.
Here, we stick to the two-dimensional approach and incorporate two types of vehicles interacting
through the flux functions. The proposed model is then defined by the coupling of LWR-type models
for two classes of vehicles in the x and y direction. The interaction between the two classes of vehicles
is modeled by means of the flux functions which depend on the sum of vehicle densities as in [7, 13].
With suitable assumptions on the flux functions, we study the two-dimensional Riemann problems
and validate the model comparing the theoretical results with the solutions given by a numerical
approximation of Lax-Friedrichs type. Then, we calibrate the flux and velocity functions with the
German dataset [17] and compare the results of our model with real trajectories data. We also test
the ability of the model of capturing vehicles overtaking.

The paper is organized as follows. In Section 2 we introduce the traffic model and study the
Riemann problems. In Section 3, we describe the numerical scheme and validate the model via
numerical tests. In Section 4, we calibrate the model with a German dataset and compare the results
with the real trajectories of vehicles. In Section 5, we propose a modified version of the model
calibrated with real data, and finally we investigate on the ability of the model to simulate vehicles
overtaking compared to a multi-lane model.

2 Two-dimensional multi-class model

In this section, we introduce the traffic model used throughout the paper. Let us consider two classes
of vehicles, whose densities are denoted by ρ and µ, respectively. Our aim is to describe the dynamics
of the two classes by means of a two-dimensional multi-class model. To this end, following [12], we
introduce a LWR-type model in two dimensions for two classes of vehicles, i.e.,{

ρt + (qxρ (ρ, µ))x + (qyρ(ρ, µ))y = 0

µt + (qxµ(ρ, µ))x + (qyµ(ρ, µ))y = 0,
(2.1)

where qxρ,µ are the fluxes of ρ and µ along the x-direction, and qyρ,µ are the fluxes of ρ and µ along the
y-direction. Similarly to [13], we define the flux functions as

qxρ (ρ, µ) = ρcx
(

1−
(
ρ+ µ

rmax

))
qyρ(ρ, µ) = ρcy

(
1−

(
ρ+ µ

rmax

))
qxµ(ρ, µ) = µcx

(
1−

(
ρ+ µ

rmax

))
qyρ(ρ, µ) = µcy

(
1−

(
ρ+ µ

rmax

))
,

(2.2)
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where cx and cy are parameters to be calibrated and rmax is the maximum density of vehicles. The
velocity functions in x and y directions coincide for ρ and µ, and are defined by

ux = cx
(

1−
(
ρ+ µ

rmax

))
, uy = cy

(
1−

(
ρ+ µ

rmax

))
.

Hence, cx and cy represent the maximum velocity in x and y direction. Note that we assume that the
two classes of vehicles have the same velocity cx and cy, and they have the same maximum density
rmax.

First of all, we present the properties of model (2.1). To simplify the notation, we normalize ρ and
µ in order to fix rmax = 1. We introduce the following vectors

U =

(
ρ
µ

)
, f(U) =

(
ρcx (1− (ρ+ µ))

µcx (1− (ρ+ µ))

)
, g(U) =

(
ρcy (1− (ρ+ µ))

µcy (1− (ρ+ µ))

)
and matrices

A(U) = Df(U), B(U) = Dg(U).

Therefore, we can rewrite system (2.1) as

Ut +AUx +BUy = 0. (2.3)

System (2.3) is hyperbolic if any linear combination of A and B is diagonalizable. Thus, for (κ1, κ2) ∈
R2, we define C = κ1A+ κ2B. The eigenvalues of C are

λ1 = (κ1c
x + κ2c

y)(1− (ρ+ µ)), λ2 = (κ1c
x + κ2c

y)(1− 2(ρ+ µ))

which are real for any couple (κ1, κ2), and they coincide if and only if (ρ, µ) = (0, 0) or κ1 = −cyκ1/cx.
The associated eigenvectors are

γ1 =

(
−1
1

)
, γ2 =

(
ρ/µ

1

)
.

The first eigenvalue is linearly degenerate, i.e., ∇λ1·γ1 = 0, while the second one is genuinely nonlinear,
i.e., ∇λ2 · γ2 = 0. The Riemann invariants are

z1 = ρ+ µ, z2 = log (ρ/µ) .

2.1 Two-dimensional Riemann problems

Next, we describe the two-dimensional Riemann problem [6, 37] associated with (2.1). To simplify
the computations, we introduce the variable r = ρ+ µ, so that problem (2.1) can be rewritten as{

rt + (rcx (1− r))x + (rcy (1− r))y = 0

r(0, x, y) = r0(x, y).
(2.4)

For convenience, we define f̂(r) = rcx (1− r) and ĝ(r) = rcy (1− r).

Remark 1. The treatment of the two-dimensional Riemann problem proposed in [6] assumes convex
flux functions f and g. In order to recover this hypothesis in our case, it is sufficient to choose the
parameters cx and cy negative. However, the concave case can be recovered from the following analysis
through proper sign changes.
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We look for self-similar solutions r(t, x, y) = v(x/t, y/t) and therefore introduce ξ = x
t and η = y

t .
We can rewrite the first equation of (2.4) as

(cx(1− 2v)− ξ)vξ + (cy(1− 2v)− η) vη = 0 (2.5)

which leads us to
(cx(1− 2v)− ξ)dη + (cy(1− 2v)− η) dξ = 0,

where cx(1− 2v) = f̂ ′(v) and cy(1− 2v) = ĝ′(v).
The set of singular points parametrized by v is the straight line

S = {(ξ, η) | ξ = cx(1− 2v), η = cy(1− 2v)} .

Defining

γ(v−, v+) =
f̂(v+)− f̂(v−)

v+ − v−
= cx(1− v+ − v−)

ν(v−, v+) =
ĝ(v+)− ĝ(v−)

v+ − v−
= cy(1− v+ − v−),

(2.6)

the Rankine-Hugoniot jump condition is

dη

dξ
= −ν(v−, v+)− η

γ(v−, v+)− ξ
= −c

y(1− v+ − v−)− η
cx(1− v+ − v−)− ξ

. (2.7)

Assuming that the normal vector (dη, dξ) is directed towards the positive side of the shock curves,
the Oleinik’s entropy condition is

(γ(v−, v0)− γ(v−, v+)) dη + (ν(v−, v0)− ν(v−, v+)) dξ

= cx(1− v+ − v0)dη + cy(1− v+ − v0)dξ

≥ 0

(2.8)

for v0 between v− and v+.
Since our aim is to study the Riemann problems, we are interested in an initial datum such as

r0(x, y) =


v1 0 < x <∞, 0 < y <∞
v2 −∞ < x < 0, 0 < y <∞
v3 −∞ < x < 0, −∞ < y < 0

v4 0 < x <∞, −∞ < y < 0

which in the variables (ξ, η) is given by

lim
ξ/η=const,

ξ2+η2→∞

v(ξ, η) =


v1 ξ > 0, η > 0

v2 ξ < 0, η > 0

v3 ξ < 0, η < 0

v4 ξ > 0, η < 0.

(2.9)

The solution of problem (2.5) with initial data (2.9) is composed of elementary waves. There are
five possible cases: (1) no shocks, (2) no rarefaction waves, (3) exactly one shock, (4) exactly one
rarefaction wave, (5) two rarefaction waves and two shocks. In this work we skip the full details of
the possible cases and refer to [37] for a detailed discussion. Let us highlight the five cases now:

(1) No shocks: This case is verified when v3 < v2 < v4 < v1. Each couple (v2, v1), (v3, v4) (v1, v4)
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and (v2, v3) is connected by rarefaction waves and the straight line S defines the points of connection
between them. The solution is represented in Figure 1(a).

(2) No rarefaction waves: This case is verified when v3 > v4 > v2 > v1. The couples (v2, v1)
and (v2, v3) are connected by two shocks which collide in A = (γ(v1, v2), ν(v2, v3)) while the couples
(v3, v4) and (v4, v1) are connected by two shocks colliding in B = (γ(v3, v4), ν(v1, v4)). Then, we
have two shocks which connect v1 and v3. They start from the point O = (γ(v1, v3), ν(v1, v3)) and
terminate either in A or in B. The solution is represented in Figure 1(b).

S

η

ξ

v3

v2

v1

v4

(a) Case of no shocks.

η

ξ
A

O

B
v3

v2

v1

v4

(b) Case of no rarefaction waves.

Figure 1. Representation of no shocks (a) and no rarefaction waves (b).

(3) Exactly one shock: This case is verified when

v4 > v1 ≥ v2 ≥ v3 or v2 < v3 ≤ v4 ≤ v1.

The first sub-case is represented in Figure 2(a). Using the Rankine-Hugoniot condition (2.7) it can
be shown that the shock curve is concave, monotonically increasing in (v1, v4), bounded by the base
curve S , tangentially intersects S and satisfies the entropy condition (2.8). A similar analysis holds
for the second sub-case which is represented in Figure 2(b).

η

ξ

R

R

S

S

v3

v2 v1

v4

(a) v4 > v1 ≥ v2 ≥ v3.

η

ξ

R

R

R

S

S

v3

v2

v1

v4

(b) v2 < v3 ≤ v4 ≤ v1.

Figure 2. Representation of exactly one shock, where R denotes rarefaction waves and S shocks.

(4) Exactly one rarefaction wave: This case is verified when

v1 ≤ v2 ≤ v3 < v4 or v2 < v1 ≤ v4 ≤ v3.
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The first possibility of initial data gives results similar to the previous case of exactly one shock wave.
For the second initial datum there exist several sub-cases but we omit the details. In Figure 3 we
show two examples for the two initial data configurations.

(5) Two shocks and two rarefaction waves: This case is verified when

η

ξ

R

S

S

S

S

v3

v2

v1

v4

(a) v1 ≤ v2 ≤ v3 < v4.

η

ξ

C.D.

R

S

S

Sv3

v2

v1

v4

(b) v2 < v1 ≤ v4 ≤ v3.

Figure 3. Representation of exactly one rarefaction wave, where R denotes rarefaction waves, S shocks and
C.D. contact discontinuities.

v4 > v1 ≥ v3 > v2 or v4 > v3 > v1 > v2.

The main difference between the two options of initial data is that in the first case the shock curves
are not neighbors while in the second case they are neighbors. There are again several sub-cases, we
only show an example of the two possible initial data sets in Figure 4.

η

ξ

S

R

R

S

S

v3

v2

v1

v4

(a) v4 > v1 ≥ v3 > v2.

η

ξ

R

R

S

S

S

v3

v2

v1

v4

(b) v4 > v3 > v1 > v2.

Figure 4. Representation of two shocks and two rarefaction waves, where R denotes rarefaction waves and S
shocks.

In the next section, we introduce a suitable discretization for the multi-class model. For validation
purposes of the proposed scheme, we aim to recover the theoretical results from above.
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3 Numerical discretization

The numerical analysis of system (2.3) can be done using the dimensional splitting approach [22]
which means that the two-dimensional problem is split into two one-dimensional problems. Thus,
equation (2.3) is split into

Ut +AUx = 0, Ut +BUy = 0.

We uniformly divide the two-dimensional space [0, Lx]× [0, Ly] into a grid Ω = [0, Nx]× [0, Ny] with
x-step ∆x and y-step ∆y. We refer to the cell of the grid as Ωij . Defining λ1,2 and γ1,2 the eigenvalues
of A and B respectively, the time step ∆t is determined by

∆t

∆x
≤ 1

2

(
max
i,j=1,2

{|λi|, |γj |}
)−1

. (3.1)

Then, the time interval [0, T ] is divided into time steps of length ∆t. Starting from a given initial
datum U0

ij , the numerical scheme is defined by the Strang splitting as

U∗ij = Unij −
∆t

2∆x
(Fni+1/2,j − F

n
i−1/2,j)

U∗∗ij = U∗ij −
∆t

∆y
(G∗i,j+1/2 −G

∗
i,j−1/2)

Un+1
ij = Unij −

∆t

2∆x
(F ∗∗i+1/2,j − F

∗∗
i−1/2,j).

We use the Local Lax-Friedrichs flux (also known as Rusanov flux) [3, Chapter 3] for F and G, i.e.,

Fi+1/2,j =
1

2
(f(Ui+1,j) + f(Ui,j)− αi+1/2,j(Ui+1,j − Ui,j)),

where αi+1/2,j is the maximum modulus of the eigenvalues of the Jacobian matrix in the interval
(Ui,j , Ui+1,j).

3.1 Validation

We now test the discretization method for the two-dimensional multi-class model (2.3) while comparing
the numerical results to the theoretical solutions of the Riemann problems introduced in Section 2.1.

Our test setting is given by Ω = [−5, 5] × [−5, 5] with ∆x = ∆y = 0.02. We fix the parameters
of (2.2) to cx = cy = −1. As already observed in Remark 1, we fix negative parameters to recover
convex flux functions. The time interval [0, T ] = [0, 1] is divided into time steps of length ∆t satisfying
condition (3.1). The initial datum for the two classes ρ and µ is taken as in (2.9)

ρ0(x, y) =


ρ1 (x, y) ∈ (0, 5)× (0, 5)

ρ2 (x, y) ∈ (−5, 0)× (0, 5)

ρ3 (x, y) ∈ (−5, 0)× (−5, 0)

ρ4 (x, y) ∈ (0, 5)× (−5, 0).

and µ0(x, y) = ρ0(x, y)/2. For simplicity of notation we take the values ρi ∈ {1, 2, 3, 4} and then
normalize ρ and µ dividing by rmax = ρmax + µmax = 6.

Since we aim to recover the results of the analysis done in Section 2.1, where the plots are defined
for the plane (ξ, η) with ξ = x/t and η = y/t, we note that for t = 1 the variables ξ and η coincide
with x and y. Therefore, we plot the contours of the numerical solution Unij at time tn = 1 in order
to identify the plane (x, y) with the plane (ξ, η) and for a better comparison.
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As we have explained in Section 2.1, there are only five possible configurations of the solution,
which are determined by the initial values ρi, i = 1, . . . , 4.

(1) No shocks: We fix ρ1 = 4, ρ2 = 2, ρ3 = 1 and ρ4 = 3. As shown in Figure 5(a), we have only
rarefaction waves connected by the straight line S = {(x, y) | y = x}. The results in Figure 5(a)
coincide with the theoretical solution shown in Figure 1(a).

(2) No rarefaction waves: We fix ρ1 = 1, ρ2 = 2, ρ3 = 4 and ρ4 = 3. In Figure 5(b), the points
of connection between the shocks are A = (γ(ρ1 + µ1, ρ2 + µ2), ν(ρ2 + µ2, ρ3 + µ3)) = (0.25, 0.5), B =
(γ(ρ3 +µ3, ρ4 +µ4), ν(ρ4 +µ4, ρ1 +µ1)) = (0.75, 0) and O = (γ(ρ1 +µ1, ρ3 +µ3), ν(ρ1 +µ1, ρ3 +µ3)) =
(0.25, 0.25) with γ and ν defined in (2.6). The results in Figure 5(b) coincide with the theoretical
solution shown in Figure 1(b).

(3) Exactly one shock: We fix ρ1 = 3, ρ2 = 2, ρ3 = 1 and ρ4 = 4. As shown in Figure 5(c),
we consider the first sub-case described in Section 2.1, and the shock wave is below the straight line
S = {(x, y) | y = x}. The results in Figure 5(c) coincide with the theoretical solution shown in Figure
2(a).

(4) Exactly one rarefaction wave: We fix ρ1 = 1, ρ2 = 2, ρ3 = 3 and ρ4 = 4. The results in
Figure 5(d) coincide with the theoretical solution shown in Figure 2(a), and similarly to the previous
case we have that the only rarefaction wave is below the straight line S = {(x, y) | y = x}.
(5) Two shocks and two rarefaction waves: We fix ρ1 = 3, ρ2 = 1, ρ3 = 2 and ρ4 = 4. As shown
in Figure 5(e), the shock waves are not neighbors, but they are separated by the rarefaction waves
and the straight line S = {(x, y) | y = x}. The results in Figure 5(e) coincide with the theoretical
solution shown in Figure 4(a).
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(a) No shocks.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

(b) No rarefaction waves.
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(c) Exactly one shock.
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(d) Exactly one rarefaction wave.
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(e) Two shocks and two rarefaction
waves.

Figure 5. Numerical solutions of Riemann problems depending on the initial datum.
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4 Data-driven multi-class model in 2D

In this section, we calibrate the two-dimensional multi-class model with a dataset of real trajectories
data. We employ the public German dataset [17] which contains vehicle trajectories data recorded on
the German motorway A3, nearby Frankfurt am Main. The analyzed area is a three lanes highway
of about 900 meters in length and 12 meters in width, depicted in Figure 6. A system of five video
cameras recorded the vehicles passing through the study area, collecting trajectory data for 20 minutes
with a sampling period of about 0.2 seconds. We refer to [17] for a detailed description of the dataset
and of the data collection method. We observe that the dataset distinguishes several types of vehicles,
and particularly in this work we focus on the dynamics of cars and trucks.

   
 

1 
 

Description of the microscopic traffic dataset 

Eszter Kalló, Adrian Fazekas, Serge Lamberty, Markus Oeser 

Institute of Highway Engineering (ISAC), RWTH Aachen University 

Summary: The presented microscopic traffic data was obtained from 15 videos recorded within project 
ESIMAS [3] in a single traffic direction, with 5 cameras installed above the road, along a 1km tunnel 
section on the German motorway A3 nearby Frankfurt am Main. The videos were recorded in various 
traffic conditions between 7:35 am and 8:00 am. From this material 8305 vehicles were extracted within 
the project “Unfallrisikoabschätzung” funded by the German Research Foundation (DFG, Project number: 
280497386). Despite the sometimes occurring dense traffic conditions, the vehicle’s discrete trajectories 
were determined with high accuracy using a software developed at the Institute of Highway Engineering 
(ISAC) at RWTH Aachen University. Studying the presented dataset, many stop-and-go situations can be 
seen at the macroscopic level of analysis, along with many vehicle interactions on the microscopic level.  

 

Location description 

The motorway at this section of the tunnel, in the observed direction, has three traffic lanes, one exit 

and one entry lane. The speed limit is 100 km/h. The cameras are spaced between 155 to 340 m away 

from each other, and each of them covers approximately 100 m of road. For each of these sections, an 

individual right-handed coordinate system was used to determine the vehicle’s position as shown in 

Figure 1. Note, that since the X axes lie on the right edge of the rightmost traffic lane pointing in the 

travel direction, the exit and entry lane have negative Y-coordinates in the dataset. We assumed that 

the road is a plane and its z-coordinate is zero. 

 

 

 

 

Data collection method   

To collect the microscopic traffic data, a self-developed software was employed, which is composed of 

a graphical user interface along with a video player by which information was saved into a database. 

The data gathering process consisted of two steps for each vehicle. As first step, the user selected an 

appropriate 3D vehicle model. As second step, the user visually matched the selected 3D model with 

the chosen vehicle in the video frame (see Figure 2.a-b) to register the vehicle’s position in the road-

section’s coordinate system (see Figure 2.c). 

 

Figure 2. a-b) The process of matching a vehicle with a 3D point cloud [1]. c) Vehicle matched with a 3D point cloud within the 
coordinate system of the road-section. 

Figure 1. Schematic presentation of the road section 

a) b) c) 

Figure 6. German motorway A3 structure, cf. [17].

4.1 Fundamental diagrams

In order to calibrate the two-dimensional model with the German dataset, we need first to derive
macroscopic quantities from the microscopic information provided by the dataset. Following [12], we
describe how we derive the density of cars and trucks, ρ and µ, the speed in the two directions, ux

and uy, and the flux in the two directions, qxρ,µ and qyρ,µ. Note that, as we have already observed in
Section 2, the velocity functions coincide for ρ and µ since cx and cy do not distinguish the class of
vehicles.

We consider the data from the second camera from the right of Figure 6, thus we work with 20
minutes of real data. We introduce the time interval (t0, tM ), with t0 = 0 and tM = 20 min, and
uniformly divide it with a time step dt. Note that dt is used to derive the macroscopic quantities
from the microscopic ones, and is independent of the time step ∆t of the numerical scheme. We call
Nρ,µ(tk) the total number of cars and trucks at time tk and Lx the length of the road along the main
direction of travel. Then, we define

ρ̃(tk) =
Nρ(tk)

Lx
, µ̃(tk) =

Nµ(tk)

Lx
. (4.1)

The German dataset only provides the position of vehicles with respect to the two directions, thus
we need to derive the speed of vehicles from their positions. We assume that each vehicle travels at
constant speed which corresponds to the slope of a linear approximation in the least square sense of
the vehicle positions. We denote by vx,yi the resulting microscopic speed of car i and by wx,yi the
analogous speed of truck i. Since we assume that the two classes have the same speed function, we
define the average speed as a function of the two classes

ũx(tk) =
1

Nρ(tk)

Nρ(tk)∑
i=1

vxi +
1

Nµ(tk)

Nµ(tk)∑
i=1

wxi

ũy(tk) =
1

Nρ(tk)

Nρ(tk)∑
i=1

vyi +
1

Nµ(tk)

Nµ(tk)∑
i=1

wyi .

(4.2)

Finally, we combine equations (4.1) and (4.2) to define the flux functions as

q̃xρ (tk) = ρ̃(tk)ũx(tk), q̃yρ(tk) = ρ̃(tk)ũy(tk)

q̃xµ(tk) = µ̃(tk)ũx(tk), q̃yµ(tk) = µ̃(tk)ũy(tk).
(4.3)
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Once we have the density, speed and flux data as functions of time, we aggregate them with respect
to a certain time period T̃ = κdt. In particular, we fix dt = 1 s and κ = 60. In Figure 7, we show the
speed-density and flux-density diagrams for the two classes of vehicles in the x and y directions.
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(a) Ground-truth speed ũx.
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(b) Ground-truth flux q̃xρ .
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(c) Ground-truth flux q̃xµ.
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(d) Ground-truth speed ũy .
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(e) Ground-truth flux q̃yρ .
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(f) Ground-truth flux q̃yµ.

Figure 7. Speed-density and flux-density diagrams for the two classes related to the x-direction in the first
row, and to the y-direction on the second row.

The graphs show that the main direction of the flow is along the x-axis, according to the structure
of the analyzed road, while the movements along the y-axis represent the lane changes. Note that
both the flux and the velocity along the y-direction show negative values, due to the lane change that
can occur in both directions. The maximum density value reached in Figure 7 is 60 veh/km for cars
and 12 veh/km for trucks, and both values are much smaller than the maximum density of the road
given by rmax = 400 veh/km. More specifically, as we observe from Figure 7, there are more cars than
trucks along the road, thus we calibrate the maximum density fixing the length of vehicles as if there
are only cars on the road. Hence, we assume that the length of vehicles plus the safety distance is
7.5 m, thus rmax is defined as

rmax =
# lanes

length of vehicles + safety distance
=

3

7.5 m
= 400

veh

km
. (4.4)

However, it should be noted that the dataset only contains data in free-flow regimes without capturing
congested traffic phase.

Now we need to compute the parameters cx and cy. The parameters cx and cy are chosen in order
to minimize the L2-norm between the flux functions defined in (2.2) and the fluxes derived from data
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in (4.3), i.e., we consider

min
cx

(∥∥q̃xρ − qxρ (ρ, µ)
∥∥2
2

+
∥∥q̃xµ − qxµ(ρ, µ)

∥∥2
2

)
, min

cy

(∥∥q̃yρ − qyρ(ρ, µ)
∥∥2
2

+
∥∥q̃yµ − qyµ(ρ, µ)

∥∥2
2

)
.

The computation is performed using the MATLAB fminbnd tool, which is a specific solver for min-
imization problems. We obtain cx = 97.04 and cy = −0.41. Note that cy is negative, since the lane
changes occur mainly towards the rightmost lane. The resulting speed and flux functions are shown
in Figure 8. Since the flux functions depend on both ρ and µ, we have a family of flux and velocity
functions. In particular, in Figure 8(b) we show the family of flux functions qxρ as µ changes. This
means that at fixed value of µ we can move only along one of the flux curves. For instance, if µ = 0,
i.e. there are no trucks, then the fundamental diagram qxρ corresponds to the maximum flux curve in
Figure 8(b), if µ = rmax then no car can enter into the road, and thus qxρ ≡ 0. A similar discussion
holds for the other plots of Figure 8.

We observe that the advantage of the multi-class model is that we can cover quite well the clouds
of real data by means of the family of flux and velocity functions. However, we note that, since the
German dataset contains data which refer only to the not congested phase of traffic, we do not have
enough data to better calibrate congested traffic situations. In particular, the choice of cx and cy

equal for both of the classes seems to overestimate the flux for the class µ, in both the directions.
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(a) Ground-truth speed ũx and family
of speed functions ux as µ changes.
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(b) Ground-truth flux q̃xρ and family of
flux functions qxρ as µ changes.
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(c) Ground-truth flux q̃xµ and family of
flux functions qxµ as ρ changes.
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(d) Ground-truth speed ũy and family
of speed functions uy as µ changes.
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(e) Ground-truth flux q̃yρ and family of
flux functions qyρ as µ changes.
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(f) Ground-truth flux q̃yµ and family of
flux functions qyµ as ρ changes.

Figure 8. Speed-density and flux-density diagrams for the two classes defined from real data (green and blue
circles) and family of speed and velocity functions related to the x-direction in the first row, and to the
y-direction in the second row.
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4.2 Reconstruction of density from data

In this section we describe how to treat the microscopic data to define the initial density for the
numerical scheme and the reference solution for the comparison of the results. The German dataset
gives information about the position of vehicles every 0.2 seconds, thus we work with pointwise data.
In order to define a density function ρ(t, x, y) on a domain D, we use a kernel density estimation, the
Parzan-Rosenblatt window method [26, 32]. The idea of this method is to consider the data points as
a density distribution and then recover the global density by summing these distributions.

Let N(t) be the number of cars at time t and (xi(t), yi(t)) their positions, we define

ρ̃(x, y) =

N(t)∑
i=1

δ(x− xi(t))δ(y − yi(t)).

In order to recover the smooth function ρ, we introduce a two-dimensional Gaussian kernel

K(x, y) =
1

2πhxhy
exp

(
− x2

2h2x
− y2

2h2y

)
,

and then define

ρ(t, x, y) =

∫
D
K(x− ξ, y − η)ρ̃(ξ, η)dξdη =

N(t)∑
i=1

K(x− xi(t), y − yi(t)). (4.5)

We follow a similar procedure to estimate the density of trucks. The parameters hx and hy are
bandwidths chosen in order to obtain an almost constant density profile for equidistant vehicles [9].
These parameters depend on the dimensions of the road, i.e., on a road of dimensions Lx ×Ly we fix
hx = Lx/20 and hy = Ly/20, with Lx being the length of the road along the x-axis and Ly the length
along the y-axis.

For each video camera of the German dataset we work with records data for about 80 m in length
and 12 m in width. The average speed of vehicles is such that they exit from the recording area after
a few seconds. In order to test longer simulations and compare them with real data, we assume that
the trajectory of each vehicle can be approximated by a linear movement. Indeed, let us consider
a vehicle i which crosses the road between a time interval [t0, t1]. We compute the coefficients ax,yi
and bx,yi such that we can approximate the x and y position as x(t) = axi + bxi t and y(t) = ayi + byi t
minimizing the L2-norm of the difference with the real positions. In this way, we are able to compute
the “real” position of vehicles even when they exit the supervised area. The computed positions also
allow for a comparison to the numerical results.

4.3 Numerical test

Now, we compare the numerical simulations of model (2.1) with the real data computed from equation
(4.5). The simulation refers to the data recorded by the second video camera of the German dataset.

Let us consider the domain [0, Lx]× [0, Ly] uniformly divided into a numerical grid Ω = [0, Nx]×
[0, Ny] with x-steps of length ∆x and y-steps of length ∆y during a time interval [0, T ] divided into
time steps of length ∆t satisfying (3.1). The numerical solutions are computed by means of the
numerical scheme introduced in Section 3, and they are denoted by

ρnij = ρ(xi, yj , t
n), µnij = µ(xi, yj , t

n)

for cars and trucks respectively, with xi = i∆x, yj = j∆y and tn = n∆t. The ground-truth data are
estimated by (4.5) as explained in Section 4.2, and they are denoted by

ρtrue,nij = ρtrue(xi, yj , t
n), µtrue,n

ij = µtrue(xi, yj , t
n)

12



for cars and trucks, respectively. The parameters used in the following test are Lx = 450 m, Ly = 14 m,
∆x = ∆y = 0.5 m, T = 5 s, hx = 22.5 and hy = 0.7. The initial configuration of densities is recovered
by the ground-truth data (4.5) starting from the time t̂ = 14 s of the German dataset. Therefore, at
the beginning, the numerical solution coincides with the ground-truth solution. At time t̂ there are
three cars and one truck along the three-lanes highway, so we analyze their dynamics. In Figure 9, we
compare the contours of the ground-truth density data with the contours of the reconstructed density
by the numerical simulation at the final time T .
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(a) Cars density at time t = 0.
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(b) Simulated cars density at time
t = T .
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(c) Real cars density at time t = T .
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(d) Trucks density at time t = 0.
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(e) Simulated trucks density at time
t = T .
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(f) Real trucks density at time t =
T .

Figure 9. Contours of the density of cars (top) and trucks (bottom): initial condition at time t = 0 (left),
simulated results at time t = 5 s (middle) and reconstructed real data at time t = 5 s (right).

The dotted lines divide the road into three lanes. After 5 s of simulation the real and the numerical
configurations of density are quite similar for both populations of vehicles.

In order to better compare the numerical results with the ground-truth data, we introduce the
following errors

Eρ(t
n) =

∥∥ρtrue(·, ·, tn)− ρ(·, ·, tn)
∥∥
L1 , (4.6)

Eµ(tn) =
∥∥µtrue(·, ·, tn)− µ(·, ·, tn)

∥∥
L1 . (4.7)

The errors at time T of the previous simulation are Eρ(T ) = 0.06 and Eµ(T ) = 0.02 computed with
(4.6) and (4.7), respectively. In Figure 10 we plot the numerical errors between the numerical density
and real data during 10 seconds of simulation computed every 0.5 seconds. We observe that the error
related to the truck is lower than the error related to cars and that both errors increase in time.
However, they remain of order 10−2.
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Figure 10. Error between real and numerical density of cars and trucks during 10 seconds of simulation,
computed every 0.5 seconds.

5 Further data analyses

In the previous section we have seen that the two dimensional multi-class LWR (2.1) with the flux
functions defined in (2.2) and calibrated with real data is able to simulate the dynamics of vehicles.
However, our main assumption on the flux functions is that the coefficients rmax, cx and cy are equal
for both the classes of vehicles. This is a strong assumption, since it implies that cars and trucks
have the same length and velocity. Therefore, we modify now the definition of the flux functions to
differentiate more clearly the dynamics of the two classes.

5.1 Test with real data

We consider again the German dataset [17]. Our aim is to consider different maximum density of cars
and trucks, due to the different length of vehicles, and different parameters cxρ , cxµ, cyρ and cyµ in order
to take into account velocity functions which depend on the class of vehicles. The maximum density
of cars rmax = rmax

ρ = 400 veh/km coincides with equation (4.4), and we assume that the length of
trucks is twice that of cars, hence we have rmax

µ = 200 veh/km. We slightly modify the flux functions
of (2.1) as

qxρ (ρ, µ) = ρcxρ

(
1−

(
ρ+ 2µ

rmax

))
, qyρ(ρ, µ) = ρcyρ

(
1−

(
ρ+ 2µ

rmax

))
qxµ(ρ, µ) = µcxµ

(
1−

(
ρ+ 2µ

rmax

))
, qyµ(ρ, µ) = µcyµ

(
1−

(
ρ+ 2µ

rmax

))
.

(5.1)

Note that in (5.1) the different maximum densities between cars and trucks is expressed by the term
(ρ+ 2µ)/rmax.

With the introduction of different coefficients cxρ , cxµ, cyρ and cyµ we are able to better distinguish the
behavior of the two classes of vehicles, by means of different maximum velocities for the two classes
in both the directions.

Next, we repeat a procedure analogous to the one proposed in Section 4.1 to estimate the velocity
functions and the fundamental diagrams. In particular, we define different velocity functions for ρ
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and µ as

ũxρ(tk) =
1

Nρ(tk)

Nρ(tk)∑
i=1

vxi , ũyρ(tk) =
1

Nρ(tk)

Nρ(tk)∑
i=1

vyi

ũxµ(tk) =
1

Nµ(tk)

Nµ(tk)∑
i=1

wxi , ũyµ(tk) =
1

Nµ(tk)

Nµ(tk)∑
i=1

wyi ,

from which we recover the flux functions as

q̃xρ (tk) = ρ̃(tk)ũxρ(tk), q̃yρ(tk) = ρ̃(tk)ũyρ(tk)

q̃xµ(tk) = µ̃(tk)ũxµ(tk), q̃yµ(tk) = µ̃(tk)ũyµ(tk).
(5.2)

We estimate the parameters cxρ , cxµ, cyρ and cyµ in order to minimize the L2-norm between the flux
functions defined in (5.1) and the fluxes derived from data in (5.2) and compute

min
cxρ

(∥∥q̃xρ − qxρ (ρ, µ)
∥∥2
2

)
min
cyρ

(∥∥q̃yρ − qyρ(ρ, µ)
∥∥2
2

)
min
cxµ

(∥∥q̃xµ − qxµ(ρ, µ)
∥∥2
2

)
min
cyρ

(∥∥q̃yµ − qyµ(ρ, µ)
∥∥2
2

)
,

using again the fminbnd MATLAB tool. We obtain cxρ = 99.61, cyρ = −0.40, cxµ = 74.86 and cyµ =
−0.49. Hence, the cars have a faster velocity than the trucks along the main direction of travel, while
the velocity of lane-changing is quite similar between the two classes.

In Figure 11, we show the family of speed and flux functions obtained with the above described
procedure. Note that the speed and flux functions related to trucks, shown in Figures 11(b), 11(d),
11(g) and 11(h), are defined for µ ∈ [0, rmax

µ ], with rmax
µ being the half of rmax. Again, we are able to

cover the clouds of real data, but in this case the plots of qxµ and qyµ (Figures 11(g) and 11(h)) reach
lower flux values with respect to Figures 8(c) and 8(f), according to the lower density and velocity
of trucks recorded by the dataset. Hence, the overestimation of flux values for the class of trucks is
highly reduced with the introduction of cxµ and cyµ compared to the results obtained in Section 4.1.

We repeat the same numerical test proposed in Section 4.3 with the new flux functions (5.1),
estimating again the resulting errors with (4.6) and (4.7). The density plots we obtain are similar to
the plots shown in Figure 9, thus we omit the picture. However, as shown in Figure 12, we obtain a
better estimate of the errors compared to the test done in Section 4.3.

5.2 Vehicles overtaking

A further investigation of our model is the testing of the ability of capturing vehicles overtaking. We
consider the following flux functions

qxρ (ρ, µ) = ρcxρ

(
1−

(
ρ+ µ

rmax

))
, qyρ(ρ, µ) = ρcyρ

(
1−

(
ρ+ µ

rmax

))
qxµ(ρ, µ) = µcxµ

(
1−

(
ρ+ µ

rmax

))
, qyµ(ρ, µ) = µcyµ

(
1−

(
ρ+ µ

rmax

))
,

where we have different parameters cxρ , cxµ, cyρ and cyµ but the same maximum density rmax.
We consider a numerical grid Ω = [0, Nx] × [0, Ny] with x-steps ∆x and y-steps ∆y during a

time interval [0, T ] divided into time steps ∆t satisfying (3.1). In particular we work on a road with
two lanes, with two cars and one truck. We fix the following parameters: Lx = 100 m, Ly = 6 m,
∆x = ∆y = 0.2 m and T = 4 s. Moreover, we assume that cxρ = 80 and cyρ = −0.4, while cxµ = cyµ = 0,
thus the truck does not move.
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(a) Ground-truth speed ũxρ
and family of speed func-
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(b) Ground-truth speed ũxµ
and family of speed func-
tions uxµ as ρ changes.
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(c) Ground-truth speed ũyρ
and family of speed func-
tions uyρ as µ changes.
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(d) Ground-truth speed ũyµ
and family of speed func-
tions uyµ as ρ changes.
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(e) Ground-truth flux q̃xρ
and family of flux func-
tions qxρ as µ changes.
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(f) Ground-truth flux q̃xµ
and family of flux func-
tions qxµ as ρ changes.
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(g) Ground-truth flux q̃yρ
and family of flux func-
tions qyρ as µ changes.
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(h) Ground-truth flux q̃yµ
and family of flux func-
tions qyµ as ρ changes.

Figure 11. Speed-density and flow-density diagrams for the two classes defined from real data (green and blue
circles) and family of speed and flux functions defined by (5.1).
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Figure 12. Error between real density and numerical density of cars and trucks during 10 seconds of simulation,
computed every 0.5 seconds.

As we can see in Figure 13, in the bottom-lane the truck is in front of the car. Since the truck
does not move, and the cars are free to move along the y-axis, in Figure 13(b) we see that both cars
move towards the north-east direction. In particular, the car in the top lane is leaving the road and
the other one overtakes the truck. Finally, Figure 13(c) shows that the car is able to overtake the
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truck and leaves the road while the truck is still inside the domain.

Car

Truck

Car

(a) Cars and truck density at time t =
0.

(b) Cars and truck density at time
t = T/4.

(c) Cars and truck density at time
t = T .

Figure 13. Contours of the density of cars and truck at time t = 0 (left), t = T/4 (middle) and t = T (right).

5.2.1 Comparison with a multi-lane model

Finally, we intend to compare the proposed 2D multi-class approach to a first order multi-class multi-
lane model. Specifically, we extend the multi-lane LWR model proposed in [15] to a multi-class model.
Hence, let us consider a road with two lanes and two classes of vehicles ρ and µ. The dynamics on
the two lanes is described by

Lane 1:

{
ρ1t + (q1ρ(ρ1, µ1))x = −Sρ(ρ1, µ1, ρ2, µ2)

µ1
t + (q1µ(ρ1, µ1))x = −Sµ(ρ1, µ1, ρ2, µ2)

Lane 2:

{
ρ2t + (q2ρ(ρ2, µ2))x = Sρ(ρ

1, µ1, ρ2, µ2)

µ2
t + (q2µ(ρ2, µ2))x = Sµ(ρ1, µ1, ρ2, µ2),

(5.3)

where ρ1, µ1 and q1ρ,µ are the densities and the flux function of the two classes along lane 1, and ρ2,
µ2 and q2ρ,µ along lane 2. The functions Sρ,µ regulate the lane changing and are defined as

Sρ = C(max{u2ρ(ρ2, µ2)− u1ρ(ρ1, µ1), 0}ρ1 + min{u2ρ(ρ2, µ2)− u1ρ(ρ1, µ1), 0}ρ2)

Sµ = C(max{u2µ(ρ2, µ2)− u1µ(ρ1, µ1), 0}µ1 + min{u2µ(ρ2, µ2)− u1µ(ρ1, µ1), 0}µ2),
(5.4)

where u1,2ρ,µ are the velocity functions related to ρ and µ respectively along the two lanes and C is a
constant.

The flux functions are chosen similar to the ones used for the two-dimensional multi-class model.
Therefore, we define them as

q1,2ρ = ρ1,2cρ

(
1−

(
ρ1,2 + µ1,2

rmax

))
q1,2µ = µ1,2cµ

(
1−

(
ρ1,2 + µ1,2

rmax

))
,

where rmax is the maximum density of the two classes. In order to compare such a model with
the results obtained with our multi-class two-dimensional model from Section 5.2, we replicate an
analogous test. Indeed, we consider a road [0, L] with two lanes along which there are two cars and a

17



truck during a time interval [0, T ]. The parameters of the test are L = 100 m, ∆x = 0.2 m, T = 4 s,
C = 1 in (5.4), cρ = 80 and cµ = 0. We use a Godunov scheme to approximate problem (5.3).

In Figure 14, we show the density of cars and trucks on the two lanes at different times. The plots
in the first row show Lane 1, with a car and no trucks, the plots in the second row show Lane 2,
with a car and a truck which does not move at all during the simulation since its velocity is 0. The
source terms in (5.3) allow lane changing even if the traffic is not congested and vehicles are free to
move along their lane. Hence, in Figure 14(e) we see that the density of cars increases at the end of
Lane 2, due to the source term, while in Figures 14(b) and 14(c) the density of cars related to Lane
1 increases since the truck does not move and the cars change lane. At the end of the simulation the
density of cars is higher on Lane 1 while it is close to 0 on Lane 2.
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(a) Cars and truck density at time
t = 0 on Lane 1.
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(b) Cars and truck density at time
t = T/4 on Lane 1.
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(c) Cars and truck density at time
t = T on Lane 1.
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(d) Cars and truck density at time
t = 0 on Lane 2.
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(e) Cars and truck density at time
t = T/4 on Lane 2.
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(f) Cars and truck density at time
t = T on Lane 2.

Figure 14. Plot of the density of cars and truck on Lane 1 (first row) and Lane 2 (second row) at time t = 0
(left), t = T/4 (middle) and t = T (right).

From the two tests proposed in Sections 5.2 and 5.2.1 we observe that the 2D multi-class model
seems to be more suitable for capturing the overtaking of vehicles. Indeed, the two-dimensional
description seem to fit better to such a dynamics, as shown in Figures 13 and 14.

6 Conclusions

In this work we have introduced a two-dimensional multi-class traffic model. We have analyzed the
two-dimensional Riemann problems related to our model and provided numerical validations with a
numerical scheme based on dimensional splitting. Then, we have analyzed the model with a dataset
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of real trajectories data, focusing on the dynamics of cars and trucks. The dataset has been used
to calibrate the flux and velocity functions and to compare the numerical results with ground-truth
data. The numerical tests have shown the good approximation of the trajectories with our model,
obtaining a numerical error of 10−2. We have improved the results modifying the flux functions in
order to consider different maximum velocity values for the two classes of vehicles. Finally, we have
tested the ability of the model to simulate vehicles overtaking, also in comparison with a first order
multi-class multi-lane model.

Future investigations will aim at improving the proposed approach with second order models and
deriving the corresponding microscopic model as a system of ordinary differential equations.
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